DIN Musik

Ein A4-Blatt ist uns allen wohlvertraut. Es ist 29 cm hoch und 21 cm breit. Es handelt sich um eine DIN Norm (deutscher Institut fuer Normen). Durch fortlaufendes Halbieren bleibt das Seitenlaengenverhaeltnis erhalten. Dazu muss dieses den Wert 0.7071.. haben. Es ist das Inverse der Wurzel aus 2. DIN Null erfuellt zusaetzlich die Bedingung, das es genau eine Flaeche von einem Quadratmeter hat.

Das alles spielt sich in der 2-dimensionalen Ebene ab. Heinrich Hemme hatte die Idee das Ganze fuer drei Dimensionen zu verallgemeinern. Das Blatt wird dann ein Quader (ein Backstein). Welche drei Ausdehnungen muss dieser haben, damit er seine Form nicht verliert, wenn man ihn halbiert? Nun es ist eins, dann das Inverse der dritten Wurzel aus 2, was 0.7937.. ist. Die kleinste Ausdehnungen ist dann noch das Quadrat dieser letzten Zahl, naemlich 0.6299.. Das Halbieren geht so: nimm die groesste Ausdehnungen und halbiere sie. Das wird dann die kleinste Ausdehnungen und die anderen zwei ruecken einen Platz nach oben.
Wenn man das Spiel auch fuer das 12-Dimensionale macht, muss man analog einen Verkuerzungsfaktor von zwoelfte Wurzel aus zwei anwenden, der das Inverse der zwoelfte Wurzel aus zwei ist! Das ist der Wert yyyy = 0.9438.. Also eins, dann yyyy, dann yyyy^2, dann yyyy^3 u.s.w. Halbieren geht wie oben: nimm die groesste Ausdehnungen und halbiere sie. Das wird dann die kleinste Ausdehnung und die anderen elf ruecken einen Platz nach oben.
Wenn man 440 Hertz als ersten Wert nimmt (das ist die Klangnote La) und den Verkuerzungsfaktor yyyy anwendet bekommt man Sol+ (Sol Kreuz). Das geht so weiter bis man bei La Kreuz und dann bei der zwoelften Verkuerzung bei 220 Hertz ankommt. Das ist das eine Oktave tiefere La.


Man kann also die 12 Ausdehnungen eines beim Halbieren die Form behaltenden 12-dimensionalen Quaders mit den 12 Halbtoenen einer Oktave beschriften!

 

Das ist Musik!

Siehe auch den Artikel von Heinrich Hemme Hier

 

„mehr lesen“ drücken!

Es werden nur die 100 letzten Beiträge angezeigt. Ueber den Link "Sitemap" ganz unten kann man auch ältere Beiträge einsehen !!

 

Meine Homepage:

http://www.baumanneduard.ch/