Color number of the plane (CNP)

Jeder sollte wissen, dass man erst vor wenigen Jahren beweisen konnte, dass alle geographischen Karten mit nur 4 Farben gefärbt werden können (Vierfarbentheorem).

 

Ein anderes ähnliches Problem ist noch nicht gelöst.

 

Wieviele Farben braucht es, wenn man die unendlich ausgedehnte Ebene so anfärben will, dass zwei Punkte immer verschieden farbig sind, wenn die Distanz zwischen ihnen eins ist?

 

Es geht um die Color number of the plane (CNP).

 

In der Illustration wird gezeigt, dass diese Anzahl kleiner gleich 7 ist. Die Kachelung mit Sechsecken, deren Diagonale etwas kleiner ist als eins, hat nur 7 Farben und man erkennt, dass zwei beliebig gewählte Orte mit Distanz eins nie gleiche Farbe haben.

 

Der andere Teil der Illustration ist eine Moser-Spindel. Das ist ein sehr kleiner Graph mit Kanten der Länge eins, bei dem es 4 Farben braucht, um zu vermeiden dass zwei benachbarte Knoten die gleich Farbe haben.

 

Mit anderen Graphen, die aber viel komplizierter sind, hat man erst kürzlich beweisen können, dass es mindestens 5 Farben braucht. Zunächst hatte der Graph 1581 Knoten. Dann konnte man das auf 553 Knoten verbessern.

 

Die Frage bleibt also offen, ob die gesuchte Anzahl Farben 5, 6 oder 7 beträgt.

Es werden nur die 100 letzten Beiträge angezeigt. Ueber den Link "Sitemap" ganz unten kann man auch ältere Beiträge einsehen !!

 

Meine Homepage:

http://www.baumanneduard.ch/